





HYDROGEN REFUELLING STATION CALIBRATION WITH A TRACEABLE GRAVIMETRIC STANDARD

#### <u>Rémy Maury</u>, Christophe Auclercq, Clémence Devilliers 17/06/2019







The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

## HYDROGEN REFUELLING STATION CALIBRATION Related European Programs

**D** This work has been realized within two European projects



FCH-JU : FCH / OP / 196 : "Development of a Metering Protocol for Hydrogen Refuelling Stations"



## HYDROGEN REFUELLING STATION CALIBRATION Road map of the presentation

- **Background regarding HRS in Europe**
- **Basic operating principle of a HRS station**
- Test protocol for HRS calibration (on-site) and primary gravimetric standard.
- Results from on-site measurements with the primary traceable gravimetric standard.
- **Conclusions and perspectives**

## HYDROGEN REFUELLING STATION CALIBRATION Background regarding HRS in Europe

#### • H2 HRS growth in Europe

#### Current and planned HRS in Europe



## HYDROGEN REFUELLING STATION CALIBRATION Background regarding HRS in Europe

- Why H2 dispensers are not certified yet?
  - Flow meters are not approved according to OIML R139 due to the absence of testing facilities (H2, 700 bar, ...)
  - OIML R139-2014 was <u>not adapted</u> for hydrogen dispensers

The standard has been revised in 2017-2018. New version issued on **Oct 2018**.

→ Therefore, short-term solution for the approval H2 dispensers is necessary for the ramp-up of the HRS network in Europe

## HYDROGEN REFUELLING STATION CALIBRATION Road map of the presentation

- **Background regarding HRS in Europe**
- **Basic operating principle of a HRS station**
- Test protocol for HRS calibration (on-site) and primary gravimetric standard.
- Results from on-site measurements with the primary traceable gravimetric standard.
- **Conclusions and perspectives**

## HYDROGEN REFUELLING STATION CALIBRATION Basic operating principle of a HRS station

• Basic principle and listing of the component:



Photo courtesy of the California Fuel Cell Partnership



## HYDROGEN REFUELLING STATION CALIBRATION Road map of the presentation

- □ Background regarding HRS in Europe
- **Basic operating principle of a HRS station**
- Test protocol for HRS calibration (on-site) and primary gravimetric standard.
- Results from on-site measurements with the primary traceable gravimetric standard.
- **Conclusions and perspectives**

- Revision of the OIML R139 standard for gaseous dispensers
  - OIML R139 revision initiated in **March 2017** to include specificities of Hydrogen dispensers
  - Accuracy classes have been largely discussed and revised:
    - Class 2 & Class 4 have been created for hydrogen service

| Accuracy class          |                              | MPE for the<br>meter                         | MPE for the complete measuring system<br>[in % of the measured quantity value] |                                                              |  |  |  |
|-------------------------|------------------------------|----------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|
|                         |                              | [11 76 0] the<br>measured<br>quantity value] | at type evaluation,<br>initial or subsequent<br>verification                   | in-service inspection<br>under rated operating<br>conditions |  |  |  |
| For general application | or general application 1.5 1 |                                              | 1.5                                                                            | 2                                                            |  |  |  |
| For hydrogen only       | 2                            | 1.5                                          | 2                                                                              | 3                                                            |  |  |  |
|                         | 4                            | 2                                            | 4                                                                              | 5                                                            |  |  |  |

| Table I - MPE val |
|-------------------|
|-------------------|

In principle: Class 2 is accepted for <u>future</u> stations, whereas Class 4 is tolerated for <u>existing</u> stations

How to test a complete measuring system?

- Accuracy tests based on <u>OIMLR139-2018</u>
  - Full series of tests:
    - -1 full fillings20-700 barAutomatic stop-1 partial fillings20-350 barManual stop-1 partial fillings350-700 barAutomatic stop-4 MMQ fillings1KgManual stopwith different starting pressure (450 bar 20 bar 180 bar 350 bar)Manual stop



Which kind of technologies have been tested ?

#### - This series of tests is performed 4 times

#### HRS technologies

– compressed gas or liquid hydrogen (cryo pump) & compressed gas (ionic compressor)
– MFM located in the station, which can be far away from the dispenser / 3 different
Coriolis manufacturers

• HRS location (France, Germany (mainly) and Netherland)















#### HYDROGEN REFUELLING STATION CALIBRATION primary gravimetric standard (Air Liquide)

- Main characteristics and design (Air Liquide + Cesame Exadebit)
  - High precision scale: 150 kg resolution 0.2g, Ex-certified
  - Composite tank type 4 of 104L (i.e. 4,0 Kg of Hydrogen at 700 bar, 15°C)
  - Mobile test bench (trailer) to be moved on each HRS
  - Trailer walls, doors and roof serve as protection against wind
  - Protection against fire (TPRD)
  - Possibility to remove the scale for transportation
  - Valve panel to **inert tank with N2** for transportation
  - Independent **vent stack** for depressurization of the tank



## HYDROGEN REFUELLING STATION CALIBRATION primary gravimetric standard (Air Liquide)

- Testing device designed and manufactured by Air Liquide (with Cesame Exadebit)
  - Certified by PTB (March 2018) as <u>first reference standard</u> for calibration, conformity assessment and verification of hydrogen refueling dispensers
    - Also accepted by LNE (France) and NMI Certin (Netherlands)
  - Fulfills metrological requirements as per OIML R139-2018
    - Uncertainty U < ⅓ MPE = 0,3%</p>
    - Uncertainty budget defined in collaboration with PTB / LNE / Cesame Exadebit

#### • CE approval

- Issue: tank is not designed as per PED, but EC79 (on-board storage)
- Long process with the Notified Body to get a Conformity Assessment according to PED

#### • Testing equipment conform to Ex rules



## HYDROGEN REFUELLING STATION CALIBRATION Road map of the presentation

- **Background regarding HRS in Europe**
- □ Basic operating principle of a HRS station
- Test protocol for HRS calibration (on-site) and primary gravimetric standard.
- Results from on-site measurements with the primary traceable gravimetric standard.
- **Conclusions and perspectives**

#### HYDROGEN REFUELLING STATION CALIBRATION

#### **Results from on-site measurements with gravimetric standard**

- Typical planning of a testing week:
  - Installation: 2-3h
  - Scale verification: 30 min
  - Accuracy test: 3 days
  - De-installation: 2-3h

#### Scale verification

- Warm-up time required of about 1h30-2h
  - Scale must remain powered during nights to save time each morning
- Verification using reference weights: 1 Kg / 2Kg / 4 Kg / 5 Kg:
  - One full verification on the 1st day
  - Then light verification each morning
- Linear correction brought to mass measurements
  - Based on scale deviation measured each day















• Same configuration (called 1) of the measuring system:



• Configuration 1: HRS2 (compressed gas) – CFM in the container



Mass delivered (kg)

\_

- Full filling : good repeatability around 0
- Partial filling : negative offset (20-350bar)
- Partial filling : positive offset (350-700bar)
- Large scatter at MMQ depending on initial pressure

#### Is this tendency often seen with this configuration 1







• Configuration 1: HRS1 (compressed gas) – CFM in the container



Mass delivered (kg)

- The same trends are observed :
- For all fillings : good repeatability but offset +2%

This could be attributed to k factor in the MFM Adjustment in Coriolis has not be realized during this test campaign One adjustment is allowed by the OIML R139

#### What about other HRS configuration ?









• Same configuration (called 2) of the measuring system:



• Configuration 2: HRS7 (compressed gas) – CFM in the dispenser



Mass delivered (kg)

- Different results than previous HRS
- More dispersion on the test results (other brand of MFM)
- Constant deviation seems observed  $\rightarrow$  Icing issue

<u>Remark</u> : weather was bad – high humidity / cold Venting was taken into account – no indication how







Configuration 2: HRS6 (Liquid H2) – CFM in the dispenser •



Mass delivered (kg)





- Large negative offset \_
- Results are centre around -7%
- If a correction is applied to the CFM, this configuration could \_ reach a class 1.5 in the OIML R139 classification
- Only one set before HRS failure. \_

#### Summary of all experiments and accuracy class for HRS

#### HYDROGEN REFUELLING STATION CALIBRATION

#### **Results from on-site measurements with gravimetric standard**

|                                             |                                          | C               | CONFIGURATION 2 |                                          |                       |                                          |        |
|---------------------------------------------|------------------------------------------|-----------------|-----------------|------------------------------------------|-----------------------|------------------------------------------|--------|
| MEAN VALUES                                 | HRS1<br>(based on<br>adjusted<br>values) | HRS2            | HRS3            | HRS4<br>(based on<br>adjusted<br>values) | HRS5                  | HRS6<br>(based on<br>adjusted<br>values) | HRS7   |
| Full fillings 20-700<br>bar                 | 0,00%                                    | -0,32%          | 0,52%           | 0,00%                                    | 0,50%                 | 0,00%                                    | 0,04%  |
| Partial fillings 20-<br>350 bar <b>(*)</b>  | -2,03%                                   | - <b>3,8</b> 4% | -2,46%          | -0,83%                                   | - <b>3,8</b> 9%       | -0,31% (*)                               | -2,26% |
| Partial fillings 350-<br>700 bar            | 2,19%                                    | 4,05%           | 0,72%           | 1,00%                                    | 4,58%                 | 0,31% <sup>(*)</sup>                     | -1,71% |
| Filling at MMQ<br>450 to 700 bar            | -0,63%                                   | 0,08%           | 1,99%           | 0,50%                                    | 4,84%                 | -0,14% (*)                               | -4,01% |
| Filling at MMQ 20<br>to 180 bar <b>(*)</b>  | -6,41%                                   | -10,02%         | -9,95%          | -1,71%                                   | -6,75% <sup>(*)</sup> | <b>0,40%</b> <sup>(*)</sup>              | -6,65% |
| Filling at MMQ<br>180 to 350 bar <b>(*)</b> | 3,29%                                    | 3,28%           | -5,13%          | 0,94%                                    | 0,51% <sup>(*)</sup>  | <b>0,71%</b> <sup>(*)</sup>              | -4,51% |
| Filling at MMQ<br>350 to 580 bar <b>(*)</b> | 3,41%                                    | 3,69%           | -1,08%          | 0,71%                                    | 4,63% <sup>(*)</sup>  | 1,70% <sup>(*)</sup>                     | -4,47% |
| CLASS OIML R139                             | 4                                        | 4               | 2               | 2                                        | 4                     | 2                                        | 4      |

#### Legend:

**Green** = all values are within the limits (MPE)

Orange = mean value is within the limits (or very close to the limits), but some single values are out of the limits (MPE)

Red = all values are out of the limits (MPE)

**Explanations for the results** 

<sup>(\*)</sup> single value

(\*) tests out of OIML R139:2018 scope

#### HYDROGEN REFUELLING STATION CALIBRATION

#### **Results from on-site measurements with gravimetric standard**

- Good reliability of the testing device in ambient conditions (hot temperatures, moderate wind, cold and humid conditions in winter)
  - Icing phenomenon to be **<u>considered</u>** and better quantified in the uncertainty budget
- Influence of the type of MFM:
  - Three models tested in different configurations
  - Good precision obtained with M1 & M2 MFM (cf. Full fillings) and good overall repeatability
  - Remark on the M3:
    - Dispersion seems more important
    - Further tests required to clearly conclude on the performance of this MFM
- Influence of the measuring system configuration (distance between the MFM and the nozzle):
  - **Configuration 2** show lower errors than configuration 1

# Why?

• Influence of distance between MFM and dispenser: Configuration 1





- Strong influence of the distance between the MFM and the dispenser
  - The longer is the distance (or volume), bigger is the error
  - Larger pressure difference in the pipe at beginning and end of fueling leads to a bigger error
    - Example: MMQ fueling at 450 bar and 20 bar initial pressure
  - If the volume of piping is known then errors can be calculated and corrected

- Influence of distance between MFM and dispenser: Configuration 2
  - Situation at beginning of a fueling



## HYDROGEN REFUELLING STATION CALIBRATION Road map of the presentation

- □ Background regarding HRS in Europe
- **Basic operating principle of a HRS station**
- Test protocol for HRS calibration (on-site) and primary gravimetric standard.
- Results from on-site measurements with the primary traceable gravimetric standard.
- **Conclusions and perspectives**

## HYDROGEN REFUELLING STATION CALIBRATION Conclusions and perspectives

- A primary test bench as been designed and developed for hydrogen refueling station calibration.
- . An intensive test campaign has been realized in Europe (7 HRS).
- . The accuracy classes has been found to mainly comply with Class 4 (for existing stations).
- The main errors have been measured and some hypothesis have been proposed to understand the difference between two main configurations – Configuration 2 seems more accurate but caution has to be taken regarding operating conditions.
- Need to make comparison between primary standard for hydrogen stations and develop new metrological framework for periodic verification to speed up the test campaing
- Need to consider other kind of technologies (bicycles, buses and train) and adapt our reference for these ranges of application.

## HYDROGEN REFUELLING STATION CALIBRATION Conclusions and perspectives

• Thank you !







## HYDROGEN REFUELLING STATION CALIBRATION Backup slides

## HYDROGEN REFUELLING STATION CALIBRATION Background regarding HRS in Europe

• Hydrogen & Fuel cells have several roles in decarbonizing major sectors of the economy





- Accuracy tests based on OIMLR139-2018
  - Full series of tests:
    - 1 full fillings 20-700 bar Automatic stop \_ 1 partial fillings 20-350 bar Manual stop \_ 1 partial fillings 350-700 bar Automatic stop \_ 4 MMQ fillings 1Kg \_ with different starting pressure (450 bar - 20 bar - 180 bar - 350 bar) Manual stop
  - This series of tests is performed **4 times**



Which kind of technologies have been tested?

## HYDROGEN REFUELLING STATION CALIBRATION Basic operating principle of a HRS station

• Basic principle and listing of the component: The OIML R139 [2] describes a HRS as a measuring system which should include at least:

a) meter; b) pressure and/or flow control device; c) emergency power supply; d) transfer point;e) gas piping; f) zero-setting device.



#### HYDROGEN REFUELLING STATION CALIBRATION primary gravimetric standard (Air Liquide)

- Testing device designed and manufactured by Air Liquide (in collaboration with Cesame Exadebit)
  - Certified by PTB (March 2018) as <u>first reference standard</u> for calibration, conformity assessment and verification of hydrogen refueling dispensers
    - Also accepted by LNE (France) and NMI Certin (Netherlands)
  - Fulfills metrological requirements as per OIML R139-2018
    - Uncertainty U < ⅓ MPE = 0,3%</p>
    - Uncertainty budget defined in collaboration with PTB / LNE / Cesame Exadebit

#### • Uncertainty sources

| Ref.  | Cause of unertainty                                                                                  | Uncertainty U(xi)                               |       | Probability density function |         | Type of<br>uncertainty  | Coefficient of sensitivity |              | Contribution to the global uncertainty |        |
|-------|------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------|------------------------------|---------|-------------------------|----------------------------|--------------|----------------------------------------|--------|
|       |                                                                                                      | Value                                           | Unit  | Туре                         | Divisor | u(xi)                   | ci                         | Unit         | [ci * u(xi)]*2                         | in %   |
| B.0   | Repeatability of measurements                                                                        | 0,70                                            | g     | Rectangular                  | 1,73    | 4,04E-01                | 1                          | g            | 1,63E-01                               | 13,45% |
| B.1   | Eccentric loads                                                                                      | 0,20                                            | g     | triangular                   | 2,45    | 8,16E-02                | 1                          | -            | 6,67E-03                               | 0,55%  |
| B.2.a | Scale resolution when empty                                                                          | 0,20                                            | g     | triangular                   | 2,45    | 8,16E-02                | 1                          |              | 6,67E-03                               | 0,55%  |
| B.2.b | Scale resolution when loaded                                                                         | 0,20                                            | g     | triangular                   | 2,45    | 8,16E-02                | 1                          | 1.70         | 6,67E-03                               | 0,55%  |
| B.3   | Uncertainty of reference weights                                                                     | 0,07                                            | g     | Normal                       | 2,00    | 3,50E-02                | 1                          |              | 1,23E-03                               | 0,10%  |
| B.4   | Scale reliability (temperature effects)                                                              | 0,20                                            | g     | Normal                       | 2,00    | 1,00E-01                | 1                          | -            | 1,00E-02                               | 0,82%  |
| B.5   | Non linearity of the scale                                                                           | 0,50                                            | g     | Rectangular                  | 1,73    | 2,89E-01                | 1                          | 1 <u>2</u> 0 | 8,33E-02                               | 6,86%  |
| B.6   | Air density (ambiant conditions)                                                                     | 0,16                                            | g     | Rectangular                  | 1,73    | 9,24E-02                | 1                          | -            | 8,53E-03                               | 0,70%  |
| B.7   | Effect of temperature on the scale                                                                   | 0,20                                            | g     | Rectangular                  | 1,73    | 1,15E-01                | 1                          | -            | 1,33E-02                               | 1,10%  |
| B.8   | Connection / disconnection                                                                           | 0,60                                            | g     | Rectangular                  | 1,73    | 3,46E-01                | 1                          | -            | 1,20E-01                               | 9,89%  |
| B.9   | Buyoncy (stability of iar density at<br>beginning and end of filling,<br>including vessel expansion) | 0,95                                            | g     | Rectangular                  | 1,73    | 5,48E-01                | 1                          |              | 3,01E-01                               | 24,78% |
| B.10  | Short time drift of balance<br>(temperature effect, wind, balance<br>performance, etc)               | 0,40                                            | g     | Rectangular                  | 1,73    | 2,31E-01                | 2                          | 17.5         | 2,13E-01                               | 17,57% |
| B.11  | Water condensation                                                                                   | 0,40                                            | g     | Rectangular                  | 1,73    | 2,31E-01                | 2                          | (11)         | 2,13E-01                               | 17,57% |
| B.12  | Zero stability after depressurization                                                                | 0,40                                            | g     | Rectangular                  | 1,73    | 2,31E-01                | 1                          | 121          | 5,33E-02                               | 4,39%  |
| B.13  | Influence of the grouding                                                                            | 0,20                                            | g     | Rectangular                  | 1,73    | 1,15E-01                | 1                          | 1731         | 1,33E-02                               | 1,10%  |
|       | Combined uncertainty                                                                                 | $u_{c} = \sqrt{\sum_{i} C_{i}^{2} U_{i}^{2}} =$ |       | 1,35                         | g       |                         |                            | TOTAL =      | 1,21E+00                               |        |
|       | Expanded uncertainty (k = 2) $U_E(K = 2)$                                                            |                                                 | (= 2) | 2,70                         | g       | 1                       | Class 1,5                  | Class 2      |                                        |        |
|       | Relative expanded uncertainty                                                                        | $U_r = \frac{U(X)}{X} \times 100$               |       | 0,270                        | %       | Criteria:<br>1/5 of MPE | 0,3                        | 0,4          |                                        |        |